Archiv der Kategorie: Hausautomatisierung

LoRa Single Channel Gateway

Mit Freunden baue ich einen Multi-Channel-Gateway, der auf sämtlichen LoRa-Kanälen empfangen und senden kann – und das mit allen SF (Spreading Factors). So ein Gateway kostet knapp 400 Euro in Summe – das ist mir zum Spielen für zu Hause zu teuer.

Nachtrag Juli 2017: wir haben mit dem Aufbau einer Community bei The Things Network in Wien begonnen. Das Ziel ist die Schaffung eines freien und offenen Netzes für IoT. Nachdem ich mehrfach auf meinen Blog hin angeschrieben wurde, es den Personen aber nicht bewusst war, dass sich hier was tut, möchte ich auf folgende Links verweisen: folgt uns auf Twitter (@TTN_Vienna), für Updates und Infos zu den nächsten Treffen oder besucht die Wiener Community Seite!

Single Channel Gateway = günstig

Die günstige Variante, die streng genommen nicht LoRaWAN-kompatibel ist, weil sie nur eine Frequenz und einen Spreading Factor unterstützt, ist ein Single Channel Gateway. Dieses hört auf einen vordefinierten (aber konfigurierbaren) Kanal mit einem vordefinierten Spreading Factor (auch konfigurierbar) und sendet die Daten an The Things Network.

Als Basis nehme ich einen Raspberry Pi 2, der aktuell eh auf eine Aufgabe wartet. Das LoRa & GPS HAT von Dragino nutze ich für die LoRa-Übertragungen. Das HAT habe ich um € 29,- bei Tindie erstanden. In Summe bin ich bei Kosten von weniger als € 65,-.

Einsatzgebiet

Wie beschrieben ist ein Single Channel Gateway kein vollständig LoRaWAN-kompatibler Gateway. Er hört nur auf eine Frequenz (Kanal) und versteht nur einen SF. Nachdem meine Sensoren abwechselnd auf drei Frequenzen senden, stelle ich den Single Channel Gateway auf eine Frequenz ein – und ich stelle mich darauf ein, nur jedes dritte Paket zu empfangen. (Da bei LoRa ja ein Counter mitläuft, kann ich das leicht nachprüfen.)

Falls ich einmal einen Sensor permanent installieren möchte, würde ich ihn fix auf die eine Frequenz stellen, die der Gateway (oder mehrere?) auch nutzt. Damit wäre ein kleines LoRa-Netzwerk möglich, das aber nur auf einer Frequenz funktioniert.

Installation

Es ist ganz einfach:

  1. aktuelle Raspian-Version installieren und Raspberry vorbereiten (resize disk, SSH-Zugriff für Fernzugriff aktivieren, Passwort und IP-Einstellungen ändern)
  2. alles aktualisieren und wiring-pi installieren:
apt-get update && apt-get dist-upgrade
apt-get install wiringpi

3. in raspi-config das SPI Interface aktivieren & rebooten

4. die Single Channel Gateway Software von Github laden und installieren:

wget https://github.com/tftelkamp/single_chan_pkt_fwd/archive/master.zip
unzip master.zip

und ein paar Parameter in der main.cpp konfigurieren:

// SX1272 - Raspberry connections
int ssPin = 6;
int dio0  = 7;
int RST   = 0;

// Set spreading factor (SF7 - SF12)
sf_t sf = SF7;

// Set center frequency
uint32_t  freq = 868100000; // in Mhz! (868.1)

// Set location
float lat=48.0;
float lon=16.0;
int   alt=200;

/* Informal status fields */
static char platform[24] = "Single Channel Gateway"; /* platform definition */
static char email[40] = "meine@email.at"; /* used for contact email */
static char description[64] = "Dragino LoRa GPS HAT Raspberry 2"; /* used for free form description */

// define servers
#define SERVER1 "52.169.76.203" // The Things Network: router.eu.thethings.network #define PORT 1700 // The port on which to send data

Danach mit „make“ builden:

make

Und schon kann ich den Gateway starten:

./single_chan_pkt_fwd

Einrichten bei The Things Network

Nun erstelle ich den Gateway in der TTN Console:

  • Register Gateway
  • dann wähle ich „I’m using the legacy packet forwarder“. Somit kann ich die Gateway EUI eingeben, die mir beim Start meines Single Channel Gateways angezeigt wurde.
  • die Description kann frei gewählt werden
  • der Frequency Plan ist Europe in meinem Fall und der
  • Router EU. Das ist auch die IP-Adresse, die wir oben in der main.cpp definiert haben. (Details siehe hier: https://www.thethingsnetwork.org/wiki/Backend/Connect/Gateway)
  • mehr muss man nicht tun (natürlich ist es schön, die GPS-Position und Höhe einzugeben)

Das war’s! Bei „Data“ kann ich zusehen, wie die Daten ankommen, und binnen kurzer Zeit bestätigt sich die Vermutung, dass ich jeden dritten Counter sehen werde:

Stückliste zum Nachbauen

  1. Raspberry Pi (2 oder 3)
  2. Dragino LoRa GPS HAT, alternativ hier beim Hersteller mit längerer Lieferzeit zu erstehen: https://www.tindie.com/products/edwin/loragps-hat/
  3. ev. eine coole Antenne? (nicht unbedingt nötig, es ist eine beim LoRA GPS HAT dabei)

Empfehlung für eine LoRa Outdoor Antenne

Bei meinen Experimenten rund um das Thema LoRa haben wir natürlich mehrere Antennen probiert: die mitgelieferten Antennen sind total in Ordnung, auch die Magnetfußantennen für’s Auto haben sich bewährt, aber die größte Begeisterung habe ich für eine Außenantenne von WiMo entwickelt:

Die WiMo 18006.02 Groundplane für 800-1000 MHz um € 25,- hat es mir angetan.

Sämtliche Pakete kommen damit bis zum ca. 1km entfernten Gateway. Vorher waren es nur ca. 30%. Die Verbesserung ist damit ideal! Nach Herstellerangaben hat die Antenne 0 dBD (dBi?) Gewinn.

Ich habe sie über ein 1m Low Loss H-155 Kabel an eine Fensterdurchführung für GSM gehängt. Das 1m-Kabel hat SMA (für die Fensterdurchführung) und N-Stecker für die Antenne direkt drauf.

Am Foto ist sie mit einer Doppelkreuzschelle befestigt, so wie die Montage am Mast vorgesehen ist.

Stückliste zum Nachbestellen:

Nachtrag Juli 2017: wir haben mit dem Aufbau einer Community bei The Things Network in Wien begonnen. Das Ziel ist die Schaffung eines freien und offenen Netzes für IoT. Nachdem ich mehrfach auf meinen Blog hin angeschrieben wurde, es den Personen aber nicht bewusst war, dass sich hier was tut, möchte ich auf folgende Links verweisen: folgt uns auf Twitter (@TTN_Vienna), für Updates und Infos zu den nächsten Treffen oder besucht die Wiener Community Seite!

Ubuntu Linux per SNMP in LibreNMS einbinden

Neuerdings bin ich ein Fan von LibreNMS, einem Network Management System bzw. einer Open-Source-Lösung für System Management.

Installation von LibreNMS

Installiert habe ich LibreNMS nach dieser Anleitung von Oliver Marshall, das hat auf Anhieb super geklappt: http://olivermarshall.net/how-to-install-librenms-on-ubuntu/

Nach der Installation habe ich vor allem Router, Switches und sonstiges Netzwerkequipment eingebunden, das hat super funktioniert. SNMP ist dort meist recht einfach konfigurierbar, ältere Geräte haben nur SNMPv1 akzeptiert, bei neueren klappt’s dann auch mit SNMPv2c und SNMPv3.

Nun möchte ich Linux Server, meist Ubuntu und meist Virtuelle Maschinen, einbinden.

Aktiviere SNMP am Ubuntu Server

Die Server müssen natürlich vom LibreNMS erreichbar sein. SNMPd, also der Daemon (= Dienst), der SNMP-Verbindungen entgegennimmt und beantwortet ist standardmäßig nicht installiert.

Mittels

apt-get update
apt-get install snmpd

ist das schnell erledigt.

Nun antwortet der SNMP-Server jedoch nur auf lokale Anfragen (vom eigenen Host (localhost) bzw. der IP-Adresse 127.0.0.1). Außerdem muss man eine SNMP-Community wählen. Eine SNMP-Community entspricht im weiteren Sinne einem Passwort. Standardmäßig ist meist „public“ für lesenden Zugriff (Read-Only) und „private“ für Schreibzugriff (Read+Write) konfiguriert. Diese Werte müssen unbedingt geändert werden.

Konfiguration SNMPd

Um snmpd zu konfigurieren, öffne ich die Datei /etc/snmp/snmpd.conf:

und ändere folgende Zeilen:

agentAddress  udp:161
rocommunity MeineGeheimeCommunity default -V systemonly
rocommunity6 MeineGeheimeCommunity default -V systemonly

Mit den oben getätigten Einstellungen nimmt der SNMPd nun Verbindungen von allen IPv4-Adressen an, wenn diese über die Community „MeineGeheimeCommunity“ anfragen.

Damit auch die Location und der Kontakt korrekt über SNMP mitgeteilt werden, passe ich diese in der gleichen Konfigurationsdatei an:

sysLocation    mein_Standort
sysContact     meine@email.adresse

Einbindung in LibreNMS

Nun kann ich über das Menü „Devices“ und „Add Device“ den Linux Server einbinden:

Kurz darauf erscheint der Server in der Liste und LibreNMS sammelt Daten. Nach einigen Stunden hat man dann bereits aussagekräftige Grafiken.

Firewall

Nachdem wir hier den SNMPd so installiert haben, dass dieser allen IP-Adressen (auch aus dem Internet) antworten würde und der einzige Schutz die Community ist, empfehle ich eine lokale Firewall zu installieren, die den Port 161 für UDP schützt und nur vom LibreNMS-Server zulässt.

Eine Anleitung dazu findet ihr hier: http://awesomism.co.uk/allow-snmp-using-ufw-on-ubuntu-server-12-04/

APC USV mit Raspberry überwacht

Auch ein Projekt, das ich schon lange umsetzen wollte: ich möchte eine USV installieren, um bei einem Stromausfall die Netzwerkverbindungen (Internet!) über Funkfeuer aufrecht zu halten. Es sollen

  • das Funkfeuer-Equipment am Dach,
  • mein Switch,
  • der Router
  • und ein Access Point

abgesichert werden.

Die Anforderungen an die Leistung sind also recht gering (jedenfalls weit unter 100W), daher dachte ich mir, dass eine günstigere USV ausreichen müsste.

Gleichzeitig habe ich nicht die Anforderung, dass ein Server oder NAS bei einem Stromausfall heruntergefahren werden muss. Es handelt sich rein um Netzwerkgeräte, die einfach abgeschaltet werden können sobald die Akkus leer sind und auch wieder zuverlässig starten sobald sie wieder Strom erhalten.

Ich habe also die APC Backup-UPS ES 700 mit 700 VA um weniger als € 90,- gekauft.

Die wesentlichen Entscheidungspunkte waren:

  • namhafter Hersteller,
  • ausreichend Kapazität (700 VA),
  • Schuko-Steckdosen in ausreichender Anzahl,
  • ausgesprochen preiswert und
  • last but not least: sie kann über ein USB-Kabel überwacht werden und ist kompatibel zu gängigen Standards.

Inbetriebnahme

Die USV war rasch in Betrieb genommen. Es muss nur ein Kabel an die Batterie im Batteriefach angeschlossen werden und dann steckt man die USV an die Steckdose. Fertig!

Über zwei LEDs (grün und rot) signalisiert die USV den Zustand und mögliche Defekte.

Überwachung

Es wäre nicht meine Art, die USV einfach vor sich hinlaufen zu lassen und darauf zu hoffen, dass alles in Ordnung ist. Es müssen also eine Überwachung der Funktion sowie ein paar Statistiken her.

Die Daten kann man von der USV über USB abrufen. Server habe ich keinen in der Nähe, also habe ich mich entschieden einen Raspberry Pi der ersten Generation (der schon einige Monate ohne Auftrag herumkugelt) für diese Funktion einzusetzen.

apcupsd auf Raspberry Pi

Als Basissystem habe ich Debian Jessie in der Minimalinstallation (ohne grafischer Oberfläche) gewählt. Mittels

apt-get install apcupsd

ist der Daemon schnell installiert.

Zwei Konfigurationsdateien müssen dann noch angepasst werden:

Die hauptsächliche Konfiguration wird in der Datei /etc/apcupsd/apcupsd.conf vorgenommen. Ich habe nur folgende Zeilen angepasst:

UPSCABLE usb
UPSTYPE usb
DEVICE

Die Zeile „DEVICE“ bleibt bewusst ohne weitere Angabe. Das ist beim USBTYPE „usb“ so vorgesehen. Damit wird die USV automatisch erkannt.

In der Datei /etc/default/apcupsd muss ISCONFIGURED auf „yes“ gesetzt werden, damit der Dienst (beim Booten) startet.

ISCONFIGURED=yes

Nach dem Aufruf von“service apcupsd start“ startet der Daemon.

Mittels „apcaccess status“ kann auch sofort der Status der USV abgerufen werden:

pi@upsberry:~ $ apcaccess status
APC      : 001,035,0906
DATE     : 2016-12-30 14:58:11 +0100
HOSTNAME : upsberry
VERSION  : 3.14.12 (29 March 2014) debian
UPSNAME  : upsberry
CABLE    : USB Cable
DRIVER   : USB UPS Driver
UPSMODE  : Stand Alone
STARTTIME: 2016-12-30 10:53:17 +0100
MODEL    : Back-UPS ES 700G
STATUS   : ONLINE
LINEV    : 228.0 Volts
LOADPCT  : 0.0 Percent
BCHARGE  : 100.0 Percent
TIMELEFT : 38.4 Minutes
MBATTCHG : 5 Percent
MINTIMEL : 3 Minutes
MAXTIME  : 0 Seconds
SENSE    : Medium
LOTRANS  : 180.0 Volts
HITRANS  : 266.0 Volts
ALARMDEL : 30 Seconds
BATTV    : 13.5 Volts
LASTXFER : Unacceptable line voltage changes
NUMXFERS : 1
XONBATT  : 2016-12-30 10:56:54 +0100
TONBATT  : 0 Seconds
CUMONBATT: 53 Seconds
XOFFBATT : 2016-12-30 10:57:47 +0100
STATFLAG : 0x05000008
SERIALNO : 5B16xxx
BATTDATE : 2016-08-05
NOMINV   : 230 Volts
NOMBATTV : 12.0 Volts
FIRMWARE : 871.O4 .I USB FW:O4
END APC  : 2016-12-30 14:58:53 +0100

Alarmierung per Email

Beispiel einer Email-Benachrichtigung nach Ausfall der Netzspannung

Wie beschrieben benötige ich keine weiteren Maßnahmen bei einem Stromausfall. Es muss also kein Server oder NAS runtergefahren werden. Ich möchte aber schon ein Email erhalten, das mir eine Statusänderung mitteilt.

In meinem Fall habe ich einen lokalen Mailserver installiert, der die Emails direkt zustellt (ohne Smarthost bzw. nicht über einen anderen SMTP-Server).

apt-get install sendmail

Um den Emailversand zu aktivieren, gehören zwei Zeilen in der /etc/apcupsd/apccontrol angepasst:

export SYSADMIN=stefan@schultheis.at
export APCUPSD_MAIL="/usr/sbin/sendmail"

Nach dem Neustart des apcupsd habe ich die USV von der Stromversorgung getrennt und kurz darauf ein Email mit der Warnmeldung „UPS Power Failure!!!“ erhalten.

Webinterface

upsstats.cgi

Für die Anzeige von Statistiken am Webinterface gibt es vier CGIs:

  • multimon.cgi: hier wird übersichtlich der Status angezeigt. Das ist vor allem sinnvoll, wenn mehrere USVs von einem Daemon überwacht werden sollen:
    apcupsd multimon.cgi – alles OK

    apcupsd multimon.cgi – Ausfall der Stromversorgung
  • upsstats.cgi: detaillierte Statistik zu einer USV (siehe Screenshot oben)
  • upsfstats.cgi: textbasierter Output, wie beim CLI Tool „apcaccess status“ (siehe oben)
  • upsimage.cgi: hat bei mir nicht funktioniert

Installiert ist das Ganze recht einfach:

apt-get install apcupsd-cgi apache2
a2enmod cgi

Hiermit wird ein Apache Webserver installiert (falls nicht schon vorhanden) und die CGIs im Verzeichnis /usr/lib/cgi-bin/ hinterlegt. Über das a2enmod-Kommando wird CGI am Webserver aktiviert.

Ab sofort kann man mit dem Webbrowser die Statistiken zur USV abrufen. Da der Webserver nur vom internen LAN (nicht im Internet) erreichbar ist und auch auf dem Server keine weiteren Dienste laufen, habe ich mir die index.html im /var/www/html-Verzeichnis mit folgenden Einträgen überschrieben, um die CGIs gemütlich aufrufen zu können:

<title>APC USV Vorzimmer</title>
<body>
<a href="/cgi-bin/apcupsd/multimon.cgi">
apcupsd MultiMon
</a><br>
<a href="/cgi-bin/apcupsd/upsstats.cgi">
apcupsd Stats
</a><br>
<a href="/cgi-bin/apcupsd/upsfstats.cgi">
apcupsd fStats
</a><br>
<a href="/cgi-bin/apcupsd/upsimage.cgi">
(apcupsd Image)
</a>
</body>

 

HP MicroServer Gen8 Stromverbrauch

Zum Herumprobieren und für ein paar Anwendungen zu Hause (Interface zur Hausautomatisierung, ua.) habe ich einen neuen kleinen Server gesucht. Meine wesentlichen Anforderungen sind:

  • Unterstützung von Virtualisierung (VMWare ESXi, XenServer oder Hyper-V)
  • geringer Stromverbrauch
  • einfach zu managen
  • vernünftiger Preis

hpmicroservergen8Mit diesen Anforderungen wurde mir von einem Freund der HP MicroServer Gen8 empfohlen. Das Gerät kostet aktuel zirka 210,- Euro und ist ein „echter“ kleiner Server. ILO 4 (https://de.wikipedia.org/wiki/Integrated_Lights-Out) inklusive.

Wunderbare Sache! Ich habe den Server bestellt und noch um folgende Module erweitert:

  • ILO 4 Advanced Lizenz um € 18,12. (hier gekauft)
  • Kingston KVR1333D3E9S/8G Arbeitsspeicher 8GB (DDR3 ECC CL9 DIMM, 240-pin), um € 68,03 (hier gekauft)
  • MicroSD-Karte als Storage für die Virtualisierungsplattform (war vorhanden)

In Summe bin ich unter 300 Euro geblieben. Damit habe ich mein Ziel vorerst erreicht:

Der HP MicroServer wurde bei mir mit 2 GB RAM geliefert, durch das Upgrade habe ich nun 10 GB zur Verfügung. (Im Link oben verweise ich auf das neuere Modell, das bei etwa dem gleichen Preis mit 4 GB ausgeliefert wird.) In Zukunft kann ich das 2 GB Modul gegen ein weiteres 8 GB Modul tauschen und hätte dann 16 GB zur Verfügung. Das ist auch das Maximum, das der HP MicroServer Gen8 unterstützt.

Das Installieren des Betriebssystems (in meinem Fall habe ich zu Beginn Citrix XenServer probiert) funktioniert über ILO Advanced mit der Remote Console ohne Probleme und auch ohne Datenträger. Das ISO Image muss nur in der Remote Console gemountet werden und die Installation erfolgt superschnell über das Netzwerk.

In diesem Setup möchte ich nun den Stromverbrauch überprüfen. Das mache ich mit meinen bewährten Edimax2101W (hier gekauft).

Das Ergebnis:

  1. beim Starten: 45 Watt
    gen8watt01
  2. unter Last (beim Booten): 31 Watt
    gen8watt02
  3. und im Leerlauf: 27 Watt
    gen8watt03
  4. ausgeschaltet zieht die ILO-Funktion übrigens 5,5 Watt.

Unifi Controller in fhem einbinden

Ich habe bereits über meine Unifi-Installation geschrieben, die sich weiterhin bewährt.

Mit großer Freude habe ich gelesen, dass seit 23. August 2015 auch ein Unifi-Modul für fhem verfügbar ist! (Das Changelog sagt: „added: 74_Unifi.pm for the Ubiquiti Networks (UBNT) – Unifi Controller“)

Das muss ich gleich probieren! Einen Unifi-Controller habe ich laufen, jetzt möchte ich diesen mit fhem verbinden und anhand der Clients im WLAN die Anwesenheitserkennung von fhem nutzen.

Mittlerweile habe ich den Unifi Controller in Version 4.6.6 bei mir laufen. Von Version 3 zu Version 4 hat sich einiges geändert, auch in der Unifi API. Es ist daher verständlich, dass man die Versionnummer angeben muss. Gleichzeitig ist es toll, dass das fhem-Modul sowohl Version 3 als auch Version 4 unterstützt.

Ich habe für den Unifi-Zugriff aus fhem einen eigenen User „fhem“ mit „Read Only“-Berechtigung im Unifi Controller angelegt.

Der Zugriff von fhem war mit einer Zeile erledigt:

define myunifi Unifi 192.168.1.9 443 fhem geheim 30 default 4

Der Syntax lautet gemäß Perl Modul:

define <name> Unifi <ip> <port> <username> <password> [<interval> [<siteID> [<version>]]]

In der Commandref stehen auch die Details zur Nutzung des Moduls.

Die Standardwerte dafür sind:

  • interval = 30 Sekunden
  • siteID = default
  • version = 4

Ich habe dennoch alles explizit angegeben. Damit hoffe ich, dass in zukünftigen Versionen keine Problem auftauchen (zB. sobald es Version 5 gibt, etc.).

fhemunifi-siteidZuerst habe ich den angezeigten Namen vom Unifi-Controller meiner Site als siteID anzugeben. Damit habe ich  keine Werte bekommen. Nach kurzer Suche habe ich die Fehlermeldung im Log gefunden:

myunifi (Unifi_GetClients_Receive) - Failed! - state:'error' - msg:'api.err.NoSiteContext' - This error indicates that the <siteID> in your definition is wrong. Try to modify your definition with <sideID> = default.

Folgender Hinweis hilft: in der URL des Controller sieht man, mit welcher siteID man verbunden ist, auch wenn diese einen anderen Namen trägt, der im Controller angezeigt wird:

Es hat dann sofort funktioniert: im „Unsorted“-Bereich habe ich nun das Objekt myunifi und alle verbundenen Endgeräte:fhemunifi1Die Daten, die fhem vom Unifi Controller bezieht sind umfangreich und ermöglichen viele Anwendungen, auch außerhalb der Presence-Funktion. Hier die Details zu einem Client:unifi2

====================================== 
_id = 558XXXXXXXXXXXXXb85ae047 
_is_guest_by_uap = false 
_last_seen_by_uap = 1441082804 
_uptime_by_uap = 33149 
ap_mac = 24:a4:XX:XX:XX:c3 
assoc_time = 1441043174 
authorized = true 
bssid = 2e:a4:XX:XX:XX:c3 
bytes-r = 3 
ccq = 991 
channel = 7 
essid = MeineSSID 
first_seen = 1435052270 
hostname = android-bfeXXXXXXXXX9f0f 
idletime = 24 
ip = 192.168.XXX.103 
is_guest = false 
is_wired = false 
last_seen = 1441082804 
latest_assoc_time = 1441049655 
mac = 60:af:XX:XX:XX:e5 
name = Stefan Samsung XXXX
noise = -94 
note = 
noted = false 
oui = SamsungE 
powersave_enabled = true 
qos_policy_applied = true 
radio = ng 
radio_proto = ng 
roam_count = 2 
rssi = 40 
rx_bytes = 1339759 
rx_bytes-r = 3 
rx_packets = 6309 
rx_rate = 6000 
signal = -54 
site_id = 53ecXXXXXXXXXXXXXXX91e2a 
tx_bytes = 1905377 
tx_bytes-r = 0 
tx_packets = 5576 
tx_power = 30 
tx_rate = 72222 
uptime = 39630 
user_id = 55892XXXXXXXXXXXXX5ae047 
usergroup_id = 
======================================

neue & weitere Funktionen

Das Modul für Unifi ist neu im fhem. Es wird laufend weiterentwickelt, so wurde letzte Nacht wieder um Funktionen erweitert, zB:

  • einen Client disconnecten,
  • einen Access Point restarten
  • die „Locate“-Funktion eines APs ein- & ausschalten (blinken)
  • Alarme am Controller archivieren

Am besten behält man das fhem Changelog im Auge. Dort werden Änderungen & Erweiterungen protokolliert.

Der Stromverbrauch meiner Kaffeemaschine

edimax2101wJetzt kann ich dank fhem und des Edimax 2101W den Stromverbrauch meiner Haushaltsgeräte messen. Und begonnen habe ich, wie ihr wisst, mit der Nespresso Kaffemaschine:

edimax-fhem-kaffeemaschinenverbrauch

Die obere Grafik zeigt jeweils den Monatsverbrauch in kWh. Die untere Grafik zeigt den jeweils aktuellen Stromverbrauch in Watt. Die Granularität ist 30 Sekunden.

Hier eine detailliertere Ansicht (gezoomt):

edimax-nespresso-detailverbrauch

Was können wir aus diesen zwei Grafiken ableiten:

  • das Aufheizen der Maschine benötigt weniger als 1 Minute und „zieht“ 1100-1200 Watt
  • für das Halten der Temperatur benötigt die Maschine immer wieder bis zu 400 Watt
  • wenn ich mir einen Kaffee mache, zeigt der Edimax 2101W kurz 45 Watt an, ich vermute hier die Pumpe, etc

Daraus ergibt sich in kWh:

  • für’s Aufheizen verbraucht die Maschine etwa 0,003-0,005 kWh (= 3-5 Wh)
  • inkl. Aufheizen und einer Stunde Betrieb verbraucht die Maschine zirka 0,016 kWh (16 Wh)
  • für jede weitere Stunde verbraucht die Maschine 0,0091 kWh (= 9,1 Wh

Strom messen mit FHEM und Edimax 2101W

Ich wollte immer schon wissen, wieviel Energie die Geräte im Haushalt verbrauchen. Waschmaschine, Kaffeemaschine beim Aufheizen, Computer, SAT Receiver, meine Funkfeuer-Installation am Dach, etc… Anwendungsbereiche hätte ich viele.

Ein Energiemessgerät mit Anzeige oder Logger auf SD-Karte hat meine Ansprüche nicht ganz zufriedengestellt. Natürlich möchte ich die Daten automatisch und zeitnah auslesen und darstellen.

Toll, dass das nun möglich ist und dass es sich in FHEM, meiner zentralen Software für die Hausautomatisierung, einbinden lässt.

Einrichtung

edimax2101wHeute Früh hat die Post meinen Edimax 2101W, gekauft um knapp weniger als € 50,-, zugestellt. Es handelt sich dabei um einen Zwischenstecker für Steckdosen, der per WLAN verbunden ist und über eine Android-App geschaltet (ein/aus), konfiguriert (Zeitschaltfunktionen, WLAN-Zugangsdaten) und ausgelesen (Energieverbrauch) werden kann.

Das Gerät sendet nach dem Anstecken an einer Steckdose eine SSID als Master (Access Point) aus. Ich verbinde mich mit meinem Android Tablet zu dieser offenen SSID, starte die EdiMax-App und konfiguriere die SSID und das Kennwort für mein WLAN, damit der Edimax 2101W sich nach einem Reboot in mein Hausnetz integriert. Meinem DHCP-Server am Router habe ich eine feste IP-Adresse für die MAC-Adresse des Edimax Gerätes eingestellt, damit sich diese nicht ändert und ich per Hausautomatisierung das Gerät abfragen kann.

Einbindung FHEM

In FHEM gibt es seit ein paar Wochen ein fertiges Modul für die Einbindung des Edimax 2101W. Es ist nicht mehr zu tun, als das Gerät mit einem einzeiligen Kommando einzubinden:

define SmartPlugCpower EDIPLUG 192.168.1.23

FHEM nimmt nun für die Authentifizierung die  Standardwerte admin/1234 an und liest sofort alle Daten aus:

fhem-edi-examplelines

Für die Verbesserung der Darstellung (va. am Floorplan) habe ich noch folgende Zeilen konfiguriert:

define SmartPlugCpower EDIPLUG 192.168.1.23
attr SmartPlugCpower eventMap on:an off:aus
attr SmartPlugCpower interval 60
attr SmartPlugCpower model SP2101W
attr SmartPlugCpower password 1234
attr SmartPlugCpower room Wohnzimmer
attr SmartPlugCpower user admin

Natürlich möchte ich die Werte in einer Datei loggen und auch als SVG zeichnen. Danke an’s FHEM Forum für die wichtigen Hinweise zu diesem Thema:

define FileLog_SmartPlugCpower FileLog ./log/SmartPlugCpower_01-%Y-%m.log SmartPlugCpower

define SVG_SmartPlugCpower SVG FileLog_SmartPlugCpower:SVG_FileLog_SmartPlugCpower:CURRENT
attr SVG_SmartPlugCpower room Wohnzimmer

define SVG_FileLog_SmartPlugCpower_Monat SVG FileLog_SmartPlugCpower:SVG_FileLog_SmartPlugCpower_Monat:CURRENT
attr SVG_FileLog_SmartPlugCpower_Monat room Wohnzimmer

fhem-edi-gplot

Die Liste der Anpassungen:

  • Y-Axis label left entfernt
  • Y-Axis label right auf „Watt“ geändert
  • im Diagramm die Sources der ersten Zeile auf „Verbrauch Watt“ geändert
  • statt der standardmäßigen Regex auf SmartPlugCpower.power_now geändert, weil das der Wert ist, den ich sehen will.

Durch Klicken auf „Write .gplot file“ wird die Einstellung aktiviert und eine Grafik erstellt.

Für die Monatsgrafik habe ich die gleichen Zeilen angepasst, die Einheit ist allerdings „kWh“:

fhem-edi-gplot-kwh

Ich mach‘ mir mal einen Kaffee

Ich hab‘ also einmal die Nespresso Kaffeemaschine angeschlossen und mir zwei Espressi gemacht:

fhem-ediplug-kaffeemaschine

Nach dem Einschalten beim Aufzeihen der Maschine werden kurz immerhin 1.200 Watt benötigt:

2015-07-16_06:49:43 SmartPlugCpower ON / 1201.70 W / 5.3106 A

Auch zwischendurch heizt die Maschine immer wieder kurz nach und hat in 1,5 Stunden (aufzeihen, zwei Espressi + 1,5h Leerlauf, danach abgeschaltet) immerhin 0,031 kWh verbraucht.