Schlagwort-Archive: empfang

Unifi AP AC Mesh Erfahrungsbericht

An den vielen anderen Beiträgen zum Thema Ubiquiti Unifi könnt ihr erkennen, dass ich diesem System bereits an mehreren Standorten vertraue. Bisher hat sich die Wahl für Unifi für mich bewährt: das System ist einfach zu bedienen, stabil im Betrieb und bietet alle Features, die ich benötige. Vor kurzem (Dezember 2016) sind neue Produkte von Ubiquiti erschienen, die auch im Freien die aktuellen WLAN-Standards kostengünstig bieten.

Das bisherige Dilemma im Outdoor-Bereich

UAP AC Mesh passt dank mitgeliefertem Adapter problemlos in die vorhandene Wandhalterung

Für den Innenbereich habe ich bereits in anderen Beiträgen entsprechende Produkt vorgestellt. Allerdings gab es bisher keine sinnvoll erschwinglichen Outdoor Access Points, die auch 5 GHz mit 802.11ac abdecken. Das war bislang ein großes Manko. Entweder man nimmt den

Unifi Mesh

Zum Glück gibt es nun zwei neue Produkte, die diese Lücke schließen:

Beide sind für den Außeneinsatz gerüstet, unterstützen 2,4 GHz und 5 GHz inklusive 802.11ac und DFS. Und das zum erschwinglichen Preis (Stand Jänner 2017: knapp über € 120,- für den Unifi UAP AC Mesh und etwa € 200, für den Unifi UAP AC Mesh Pro).

UAP AC Mesh

Der Unifi UAP AC Mesh hat das Potenzial, mein neues Standardgerät zu werden. Es ist auch für den Innenbereich fesch, bietet alle gängig benötigten Technologien und unterstützt die PoE Varianten „24V Passive PoE“ und „802.3af Alternative A“, wodurch es im Privatbereich günstig eingesetzt, aber auch an bestehende Switches im Firmenbereich angeschlossen werden kann:

  • ein Gerät für indoor & outdoor
  • lässt sich mit vielen bestehenden PoE-Switches nutzen, da es zwei Standards für die PoE-Versorgung unterstützt:
    • 24V Passive PoE (alter Ubiquiti/Mikrotik/etc. Standard)
    • 802.3af (Alternative A; vmtl. auch an 802.3at nutzbar)
  • unterstützt beide WLAN Frequenzen: 2,4 GHz und 5 GHz
  • erfüllt mit 802.11ac und 2×2 MIMO die modernsten WLAN-Standards mit Geschwindigkeiten bis 867 MBit/s. Und ist kompatibel zu 802.11a/b/g/n/ac.
  • bindet sich in bestehende Unifi-Management-Umgebungen ein und bietet somit zentrale Konfiguration & Monitoring. Optional kann der AP selbstständig mit unabhängiger lokaler Konfiguration betrieben werden.
  • abnehmbare Antennen. Der APs enthält Montagevorrichtungen, um mit externen Antennen zB. für bestehende Sektor- oder Panelantennen betrieben zu werden.
  • VLANs und 802.1q. Für mich immer wichtig, mehrere Netze über VLANs zuführen zu können und als separate SSIDs auszusenden (4 SSIDs sind gleichzeitig je Frequenz je AP möglich, die beiden Frequenzen können für unterschiedliche SSID-Konfigurationen genutzt werden)

Außerdem kann der UAP AC Mesh an vorhandene Wandhalterungen oder Antenna mounts  (zB. AirMax Antennen oder Unifi Sektor-Antennen) montiert werden (zB. für die Rocket-Serie).

UAP AC Mesh Pro

Was mir zum Unifi UAP AC Mesh Pro als erstes auffällt: er ist erheblich größer! 34,32×18,12 cm ergeben eine ziemlich eindrucksvolle Fläche, für eine Außenmontage auf einem Mast werde ich hier die Windlast speziell berücksichtigen.

Obwohl das Gerät wie eine Panelantenne aussieht, handelt es ich um einen Rundstrahler. Drei Antennen mit 8 dbi Gewinn sind verbaut, wodurch 3×3 MIMO möglich ist und nominal 5 GHz 802.11ac 1.300 MBit/s (1,3 GBit/s!), sowie für 2,4 GHz 450 Mbit/s möglich werden. Natürlich werden die Bandbreiten nur erreicht, wenn auch das Endgerät das Senden und Empfangen über 3 Antennen ermöglicht.

Hinsichtlich PoE wird beim Pro nur 802.3af unterstützt.

Erwähnenswert ist noch, dass der Pro über zwei Gigabit-Ethernet-Ports verfügt, wodurch es möglich ist, weitere Access Points „hinter“ dem Unifi UAP Mesh Pro zu betreiben (Daisy Chain).

Mesh?

Ich finde den Namen „Mesh“ etwas verfänglich: bei Mesh Network denke ich immer an Netztopologien ähnlich zu Funkfeuer. Also zu weit verteilten Netzen, wo WLAN-Systeme oder -Knoten mit mehreren anderen Systemen oder Knoten verbunden sind.

Für die hier beschriebenen Produkte finde ich das nicht ganz passend: Unifi Systeme können zwar über „Wireless Uplink“ einen Access Point über einen anderen AP anbinden. Allerdings kann ein AP, der nur ohne Kabel verbunden ist, das Signal nicht an noch einen weiteren AP weiterreichen.
(Update Februar 2017: siehe Kommentar von Harry unten, es ist bei den Mesh-Produkten möglich, auch mehrere Access Points untereinander über Wireless Uplink zu verbinden: https://help.ubnt.com/hc/en-us/articles/115002262328-UniFi-Feature-Guide-Wireless-Uplink).

Unpacking

Ich habe mich bemüht, recht zeitig nach Erscheinen der Produkte zwei Unifi UAP AC Mesh zu bestellen, da ich schon dringend ein paar Außenbereiche mit WLAN versorgen müsste, das aber bisher nur halbherzig gemacht habe, da ja die bisher verfügbaren Produkte nicht zufriedenstellend waren.

Ubiquiti hat scheinbar das Design des Zubehörs angepasst. Neu ist nämlich, dass das Netzteil und das Kabel weiß – wie der AP selbst – sind. Das Netzteil entspricht den Spezifikationen der bisherigen Produkte für 24V Gigabit passive PoE (0,5 A), ich finde abgesehen von Farbe (und der abgerundeten Form) keine technischen Unterschiede. Jedenfalls möchte ich darauf hinweisen, dass – obwohl ältere Netzteile funktionieren – darauf geachtet werden soll, dass Gigabit unterstützt wird. Schließlich ermöglicht der Access Point ja Bandbreiten, bei denen man nicht möchte, dass dann das Netzteil zum Flaschenhals wird.

Ansonst wirkt der Access Point robust, die beiden Antennen sind abschraubbar (RP-SMA-Anschlüsse). Es können also jederzeit externe Antennen angeschlossen werden. UAP AC Mesh können gemeinsam mit AirMax-Antennen oder -Sektor-Antennen genutzt werden, die bisher zB. für die Rocket-Produkte oder Outdoor+/Outdoor5  gedacht waren.

Eine Signal-LED auf der Seite des Access Points zeigt – wie auch bei anderen Unifi-Produkten üblich – den Status des Access Points:

Das Einbinden in den Unifi Controller funktioniert problemlos. Das Gerät wird sofort erkannt, ein Software-Upgrade wird angeboten und man kann es problemlos adoptieren. ich habe das richtige Profil zugewiesen und kurz darauf haben sich schon die ersten Clients verbunden. Fertig.

Das ging wirklich so schnell, dass ich dann noch versucht habe, den Unifi UAP AC Mesh über einen Wireless Uplink einzubinden. Auch hier hat alles klaglos funktioniert.

Die Signalstärken sind einwandfrei: auch mit zwei Wänden und einem Abstand von 25 Metern zum Access Point bekomme ich -65 dB angezeigt.

Fazit

Ich werde wohl vermehrt auf den Unifi UAP AC Mesh setzen, nachdem er universell in Gebäuden wie im Freien eingesetzt werden kann. Der Unifi UAP AC Mesh Pro bietet in Umgebungen mit vielen Clients aufgrund der zusätzlichen Antenne Vorteile, ich habe jedoch kaum Umgebungen, bei denen ich > 30 Geräte je AP versorgen muss.

APRS: Telemetriedaten vom Raspberry Pi 2 mit pymultimonaprs übertragen

Im vorigen Artikel habe ich beschrieben, wie ich pymultimonaprs auf einem Raspberry Pi 2 konfiguriert habe.

Nun möchte ich in der Status-Zeile ein paar Telemetriedaten übermitteln, die vom Raspberry ausgelesen werden. Konkret sind das:

  • Core Temperatur
  • Core Spannung
  • Core Spannung der SDRAM_p
  • Clock Speeds von Core und ARM

Dazu habe ich ein Script erstellt, das alle 5 Minuten über cron gestartet wird und die vollständige Status-Zeile in der Datei /tmp/aprs-telemetrie.txt hinterlegt. pymultimonaprs versendet dann den Inhalt dieser Datei als Statusmeldung.

Dieses Script (abgelegt als /home/pi/aprs-telemetrie.sh) liest die Werte aus und erstellt die Datei:

#!/bin/bash
echo "Raspberry Pi 2 mit RTL Stick core_temp="`vcgencmd measure_temp | awk -F'=' '{print $2}'\
`" core_volt="`vcgencmd measure_volts core | awk -F'=' '{print $2}'`\
" sdram_p_volt="`vcgencmd measure_volts sdram_p | awk -F'=' '{print $2}'`\
" core_clock="`vcgencmd measure_clock core | awk -F'=' '{print $2}'`\
" arm_clock="`vcgencmd measure_clock arm | awk -F'=' '{print $2}'` > /tmp/aprs-telemetrie.txt

Die Datei sieht nun so aus:

pi@roofpi ~ $ cat /tmp/aprs-telemetrie.txt 
Raspberry Pi 2 mit RTL Stick core_temp=26.1'C core_volt=1.2000V sdram_p_volt=1.2250V core_clock=250000000 arm_clock=600000000

Den Cron-Job habe ich so erstellt:

*/5 * * * *   root    /home/pi/aprs-telemetrie.sh

Nun habe ich folgende Einträge in der mymultimonaprs-Konfigurationsdatei /etc/pymultimonaprs.json geändert:

        "status": {
            "text": false,
            "file": "/tmp/aprs-telemetrie.txt"
        },

Nach einem Neustart von pymultimonaprs mittels

/etc/init.d/pymultimonaprs restart

hat das sofort geklappt:

Jan  2 13:17:40 roofpi pymultimonaprs: connecting... 95.155.111.242:14580
Jan  2 13:17:40 roofpi pymultimonaprs: connected
Jan  2 13:17:40 roofpi pymultimonaprs: # aprsc 2.0.14-g28c5a6a
Jan  2 13:17:40 roofpi pymultimonaprs: login OE1SCS-10 (PyMultimonAPRS 1.2.0)
Jan  2 13:17:40 roofpi pymultimonaprs: # logresp OE1SCS-10 verified, server T2KRAKOW
Jan  2 13:17:40 roofpi pymultimonaprs: sending: OE1SCS-10>APRS,TCPIP*:=4811.4 N/01623.2 E-RXonly APRS iGate
Jan  2 13:17:40 roofpi pymultimonaprs: sending: OE1SCS-10>APRS,TCPIP*:>Raspberry Pi 2 mit RTL Stick core_temp=25.6'C core_volt=1.2000V sdram_p_volt=1.2250V core_clock=250000000 arm_clock=600000000

 

APRS iGate über HAMnet mit pymultimonaprs

Seit kurzem habe ich bei mir im 3. Wiener Gemeindebezirk am Dach meines Wohnhauses (ca. 8. Stock) – unter anderem – folgendes Equipment installiert:

IMG_4834Der Raspberry und DVB-T-Stick sind in einem Outdoor-Gehäuse verbaut.

Mit diesem Setup möchte ich einen APRS iGate realisieren, also eine Konfiguration, mit der APRS-Pakete auf der europäischen APRS-Frequenz 144.800 MHz empfangen und dann weitergeleitet werden. Die Weiterleitung soll primär über HAMnet erfolgen und nur im Fehlerfall oder bei nicht-Verfügbarkeit meiner HAMnet-Anbindung direkt ans einen APRS-IS-Tier2-Server (vgl. http://www.aprs2.net/)  ins Internet übertragen werden.

Voraussetzung

Als Voraussetzung sollte die RTL-SDR-Software und Treiber am Raspberry bereits installiert sein. Der Vorgang ist unter anderem hier beschrieben: http://thardes.de/raspberry-pi-als-sdr-server/
(Update 2020: hier ein neuer Link zur Beschreibung: https://www.az-delivery.de/blogs/azdelivery-blog-fur-arduino-und-raspberry-pi/raspberry-headless-setup-rtl-sdr)

Weiters habe ich mittels GSM-Netz den Raspberry kalibriert und so die Ungenauigkeit meines Sticks festgestellt: 26 ppm. (vgl. ua. http://www.rtl-sdr.com/how-to-calibrate-rtl-sdr-using-kalibrate-rtl-on-linux/)

Da pymultimonaprs die Messages nicht selbst dekodiert, müssen wir noch multimon-ng installieren:

cd ~
sudo apt-get install cmake
git clone https://github.com/EliasOenal/multimon-ng.git
cd multimon-ng
mkdir build
cd build
cmake ..
make
sudo make install

Installation

Die iGate-Software pymultimonaprs installiere und hole ich von GIT:

cd ~
sudo apt-get install python2.7 python-pkg-resources
git clone https://github.com/asdil12/pymultimonaprs.git
cd pymultimonaprs
sudo python2 setup.py install

Ich erstelle ein Startscript:

sudo cp pymultimonaprs.init /etc/init.d/pymultimonaprs
sudo chmod +x /etc/init.d/pymultimonaprs
sudo update-rc.d pymultimonaprs defaults

Um in das APRS-IS-Netzwerk Pakete zu übertragen, ist ein Passwort erforderlich, das sich aus dem Call ableitet und errechnet werden muss:

cd ~/pymultimonaprs
./keygen.py CALLSIGN
Key for CALLSIGN: 31983

Konfiguration

Nun passe ich die Konfigurationsdatei /etc/pymultimonaprs.json an. Fertig konfiguriert sieht sie so aus:

{
        "callsign": "OE1SCS-10",
        "passcode": "20123",
        "gateway": [
                "aprs.oe2xzr.ampr.at:14580", "44.143.40.90:14580",
                "aprs.oe1.ampr.at:14580", "44.143.10.90:14580",
                "aprs.oe6xrr.at.ampr.org:14580", "44.143.153.50:14580",
                "aprs.oe7xgr.ampr.at:14580", "44.143.168.68:14580",
                "44.225.41.232:14580",
                "44.225.42.181:14580",
                "euro.aprs2.net:14580"],
        "append_callsign": true,
        "source": "rtl",
        "rtl": {
                "freq": 144.800,
                "ppm": 26,
                "gain": 46,
                "offset_tuning": false,
                "device_index": 0
        },
        "alsa": {
                "device": "default"
        },
        "beacon": {
                "lat": 48.19060,
                "lng": 16.38670,
                "table": "/",
                "symbol": "-",
                "comment": "RXonly APRS iGate",
                "status": {
                        "text": "Raspberry Pi mit RTL Stick",
                        "file": false
                },
                "weather": false,
                "send_every": 1800,
                "ambiguity": 1
        }
}

Ich habe für meinen Call OE1SCS den Suffix -10, auch SSID genannt, gewählt, der lt. APRS SSID-Erklärung für „internet, Igates, echolink, winlink, AVRS, APRN, etc“ gedacht ist.

Im Eintrag „gateway“ habe ich eine Liste an APRS-IS Gateways eingetragen. Die Liste wird bei jedem Neustart von pymultimonaprs vom ersten Eintrag neu abgearbeitet. Ich habe also die Gateways, die ich bevorzuge, an den Anfang geschrieben. Die meisten iGates besitzen sprechende DNS-Namen. Ich will jedoch nicht von einem funktionierenden DNS-Dienst abhängig sein, daher trage ich die IP-Adressen ein. Damit dort nicht nur kryptische HAMnet-IP-Adressen (beginnen mit 44.) stehen habe, habe ich in der gleichen Zeile den DNS-Namen zusätzlich hinterlegt, zB.:
„aprs.oe2xzr.ampr.at:14580“, „44.143.40.90:14580“

Der Dienst versucht 120 Sekunden die APRS-iGates zu erreichen. Nach 120 Sekunden meldet er ein Timeout und probiert den nächsten iGate. Sollte das Netzwerk nicht verfügbar sein oder der iGate-Server am eingestellten Port nicht antworten, wartet pymultimonaprs das Timeout nicht ab, sondern probiert unmittelbar den nächsten iGate in der Liste.

Hier ein Beispiel aus meinem Logfile:

Jan  2 10:53:42 roofpi pymultimonaprs: connecting... 44.225.42.181:14580
Jan  2 10:53:42 roofpi pymultimonaprs: Error when connecting to 44.225.42.181:14580: '[Errno 101] Network is unreachable'
Jan  2 10:53:51 roofpi pymultimonaprs: connecting... 78.47.75.201:14580
Jan  2 10:53:51 roofpi pymultimonaprs: connected
Jan  2 10:53:51 roofpi pymultimonaprs: # aprsc 2.0.18-ge7666c5
Jan  2 10:53:51 roofpi pymultimonaprs: login OE1SCS-10 (PyMultimonAPRS 1.2.0)
Jan  2 10:53:51 roofpi pymultimonaprs: # logresp OE1SCS-10 verified, server T2EISBERG
Jan  2 10:53:51 roofpi pymultimonaprs: sending: OE1SCS-10>APRS,TCPIP*:=4811.4 N/01623.2 E-RXonly APRS iGate
Jan  2 10:53:51 roofpi pymultimonaprs: sending: OE1SCS-10>APRS,TCPIP*:>Raspberry Pi mit RTL Stick

Mittels „append_callsign“: true, gebe ich an, dass mein Call in den APRS-Pfad bei der Weiterleitung ans iGates dazugefügt werden soll.

im Abschnitt „rtl“ wähle ich die Frequenz 144.800 MHz als europäische APRS-QRG, gebe meine Ungenauigkeit des Sticks (26 ppm) an, die ich vorher gemessen habe und wähle einen Gain von 46. Offset-Tuning lasse ich unbenutzt und da ich nur einen DVB-T-Stick am Raspberry habe, lasse ich den device-index bei 0.

im Abschnitt „beacon“ konfiguriere ich die eigene, regelmäßige, Aussendung meiner „Station“:

Ich gebe die eigenen GPS-Koordinaten an, wähle als Darstellungssymbol ein Haus, gemäß dieser Tabelle:
http://www.aprs-dl.de/?APRS_Detailwissen:SSID%2BSymbole
Ganz unten bei diesem Link kann man die Symboltabelle als PDF runterladen!

Ich wähle einen statischen Text für „comment“ und „status„, außerdem übertrage ich im Moment keine Wetter-Informationen. Ich möchte, dass meine Aussendung alle 30 Minuten übertragen wird (30 Minuten * 60 Sekunden = 1800 Sekunden).

Um meine Positionen nicht 100%ig genau im APRS darzustellen, habe ich die „ambiguity“ auf „1“ gesetzt. Das verringert die Genauigkeit meiner GPS-Position um 1/10 Grad-Minute. Dadurch wird meine APRS-Position auf aprs.fi mit dem Hinweis „Position ambiguous: Precision reduced at transmitter by 1 digits, position resolution approximately 185.2 m.“ zB. so dargestellt:

aprs-ambiguous
meine Station wird bewusst mit einer Ungenauigkeit von ca. 185 Metern in dem violetten Feld angezeigt. Das Feld weist darauf hin, dass die Position nicht exakt ist.

Damit wäre alles konfiguriert und über das Kommando

/etc/init.d/pymultimonaprs start

habe ich den Dienst gestartet.

Die Funktion kann man über das Logfile /var/log/syslog rasch prüfen. Unmittelbar nach dem ersten Start war meine Station auf aprs.fi sichtbar: http://aprs.fi/info/a/OE1SCS-10

Erfahrungen, Tipps & Tricks

Zuverlässigkeit des USB-Sticks

Ich habe den Dienst einige Tage laufen gelassen. Nach zirka zwei Tagen habe ich folgende Fehlermeldung im Logfile gehabt. Auch über „dmesg“ war das Problem sichtbar:

Dec 30 21:23:34 roofpi kernel: [ 2139.021653] usb 1-1.3: usbfs: usb_submit_urb returned -121
Dec 30 21:23:34 roofpi kernel: [ 2139.022123] usb 1-1.3: usbfs: usb_submit_urb returned -121
Dec 30 21:23:34 roofpi kernel: [ 2139.022580] usb 1-1.3: usbfs: usb_submit_urb returned -121
Dec 30 21:23:34 roofpi kernel: [ 2139.023041] usb 1-1.3: usbfs: usb_submit_urb returned -121
Dec 30 21:23:34 roofpi kernel: [ 2139.023968] usb 1-1.3: USB disconnect, device number 4
Dec 30 21:23:34 roofpi kernel: [ 2139.260292] usb 1-1.3: new high-speed USB device number 6 using dwc_otg
Dec 30 21:23:34 roofpi kernel: [ 2139.372309] usb 1-1.3: New USB device found, idVendor=0bda, idProduct=2832
Dec 30 21:23:34 roofpi kernel: [ 2139.372335] usb 1-1.3: New USB device strings: Mfr=1, Product=2, SerialNumber=3
Dec 30 21:23:34 roofpi kernel: [ 2139.372353] usb 1-1.3: Product: RTL2832U
Dec 30 21:23:34 roofpi kernel: [ 2139.372369] usb 1-1.3: Manufacturer: Generic
Dec 30 21:23:34 roofpi kernel: [ 2139.372386] usb 1-1.3: SerialNumber: 77771111153705700

Es hat sich also der USB-Stick verabschiedet „usb 1-1.3: USB disconnect, device number 4“ und sofort wieder neu verbunden. Damit war natürlich ein Neustart des pymultimonaprs nötig, damit dieses wieder korrekt lauscht. Leider war es damit nicht getan und der Fehler ist wenige Minuten später wieder gekommen. Ich habe das ein paar Mal wiederholt und schon befürchtet, dass der Stick vielleicht kaputt ist. Ein Reboot hat die Situation aber entschärft und nun läuft der Stick wieder seit 2 Tagen stabil.

APRS-Meldungen der ISS

Mit einem einfachen Hack, der unter anderem hier beschrieben wird, soll es möglich sein, neben der primären APRS-Frequenz 144.800 MHz auch die APRS-Frequenz der Raumstation ISS zu empfangen. Diese sendet auf 145.825 MHz. Natürlich können diese Meldungen nur gehört werden, wenn sich die ISS in Reichweite befindet. Es gibt zahlreiche Webseiten im Internet, mit denen der Zeitpunkt der nächsten Überflüge der ISS am eigenen Standorts berechnet werden kann.

Leider hat sich dieser Hack bei mir nicht bewährt: mein Stick schafft es kaum noch APRS-Meldungen zu decoden, wenn er auf beide Frequenzen hört. Die Qualität nimmt rapide ab. Woran es genau liegt, kann ich schwer sagen. Ich habe aber die Vermutung, dass es am Squelch liegt, der bei dieser Konfiguration genutzt werden muss: das Programm rtl_fm, das dem Empfang der Pakete übernimmt, funktioniert ohne Squelch, sofern man nur auf einer QRG hört. Wenn man mehrere QRGs angibt (144.8, 145.825, …) muss ein Squelch-Wert angegeben werden. Ich habe zwar 1 als kleinsten möglichen Wert konfiguriert, vermute aber, dass der Squelch bei APRS-Paketen zu spät reagiert und daher viele Pakete nicht vollständig gehört werden. Sobald ich nur auf 144.8 ohne Squelch höre, empfange ich wieder viel mehr Pakete und alles scheint zu funktionieren.

Ein anderer Benutzer hat ähnliches erlebt: „I was unable to scan both 144.39 and 145.825 and decode the packets reliably.“ (http://www.algissalys.com/amateur-radio/raspberry-pi-sdr-dongle-aprs-igate)

Wetter- & Telemetriedaten übertragen

(Edit: ich habe in einem separaten Artikel hier mittlerweile die Übertragung von Telemetriedaten beschrieben…)

pymultimonaprs kann auch Wetterdaten mitsenden. Ich habe leider keine Wetterstation, möchte aber Telemetriedaten meines Raspberry Pi 2 übermitteln. Dazu kann man ein JSON-File erstellen, das diesem Format entspricht (Quelle: https://github.com/asdil12/pymultimonaprs/blob/master/README.md):

You can set weather to a json-file. eg: "weather": "/path/to/weather.json",

If you don’t want do send weather date, just leave it on false.
This will be read in like the status-file and can look like that:

{
    "timestamp": 1366148418,
    "wind": {
        "speed": 10,
        "direction": 240,
        "gust": 200
    },
    "temperature": 18.5,
    "rain": {
        "rainlast1h": 10,
        "rainlast24h": 20,
        "rainmidnight": 15
    },
    "humidity": 20,
    "pressure": 1013.25
}
  • timestamp is seconds since epoch – must be included
  • wind
    • speed is in km/h
    • direction is in deg
    • gust is in km/h
  • temperature is in °C
  • rain
    • rainlast1h is in mm
    • rainlast24h is in mm
    • rainmidnight is in mm
  • humidity is in %
  • pressure is in hPa

The timestamp must be included – everything else is optional.

Meine Idee wäre, die Temperatur & Spannung des Raspberry Core zu übermitteln, die mittels des Kommandos „vcgencmd“ ermittelt werden können. Details siehe hier: http://elinux.org/RPI_vcgencmd_usage

Ich müsste also ein JSON-File erstellen, in das ich

  • den aktuellen UNIX-Timestamp angebe,
  • bei temperature die Ausgabe von „vcgencmd measure_temp“
pi@roofpi ~ $ vcgencmd measure_temp
temp=27.2'C

Damit übertrage ich zwar nicht die Daten des Wetters, sondern die Temperatur der CPU, aber ich kann das zum Testen mal so machen.

Es würde sich auch anbieten, andere Telemetriedaten mitzusenden, wie zB. die Spannungen der Elemente des Raspberry:

pi@roofpi ~ $ vcgencmd measure_volts core
volt=1.2000V
pi@roofpi ~ $ vcgencmd measure_volts sdram_c
volt=1.2000V
pi@roofpi ~ $ vcgencmd measure_volts sdram_i
volt=1.2000V
pi@roofpi ~ $ vcgencmd measure_volts sdram_p
volt=1.2250V

Für die Spannungen ist kein Feld in den Wetterdaten vorgesehen. Man könnte diese Daten also über die „status„-Aussendung übermitteln. Dazu ändert man im Konfig file (/etc/pymultimonaprs.json) im Bereich „status“ folgendes:

"status": {
 "text": false,
 "file": "/tmp/aprs-status.txt"
 },

In die Datei /tmp/aprs-status.txt schreibt man nun eine Zeile, die man als Status aussenden will, beispielsweise:

Raspberry Pi mit RTL Stick core_temp=27.2'C core_volt=1.2000V sdram_c_volt=1.2000V sdram_i_volt=1.2000V sdram_p_volt=1.2250V

Ideen für weitere Werte, die man aussenden könnte:

  • uptime
  • clock-speeds von core, arm und anderen Modulen im Raspberry
  • uvm…

Ich habe mittlerweile die Übertragung der Telemetriedaten in einem eigenen Artikel beschrieben.


	

APRS Smartbeaconing bewährt sich bei mir nicht

AP510 mit SmartBeaconing, zu Fuß + mit Straßenbahn unterwegs
AP510 mit SmartBeaconing, zu Fuß + mit Straßenbahn unterwegs

SmartBeaconing ist eine gute Idee: statt per APRS seine Position alle x Sekunden auszusenden und damit das APRS-Netz unnötig zu belasten, wird die Position nur gesendet, sobald es das System „smart“ findet: bei Richtungsänderungen, wesentlichen Geschwindigkeitsänderungen, etc.

Das entlastet das Netz hinsichtlich der Anzahl an Meldungen, die direkt oder über Digipeating übertragen werden und erhöht die Wahrscheinlichkeit für andere Benutzer, dass Airtime für deren Aussendung frei ist.

AP510 im Rucksack in der Straßenbahn (Antenne ist hier testweise eine Nagoya NA-771)
AP510 im Rucksack in der Straßenbahn (Antenne ist hier testweise eine Nagoya NA-771)

Ich habe überall SmartBeaconing verwendet. Schließlich bin ich großteils im Stadtgebiet von Wien und in der näheren Umgebung unterwegs und dort ist die Dichte an APRS-Empfängern & -Digipeatern sehr hoch.

AP510 APRS Tracker am Boot auf der Adria bei Kroatien im Juni 2015
AP510 APRS Tracker am Boot auf der Adria bei Kroatien im Juni 2015

Leider hat sich SmartBeaconing für mich nicht bewährt: obwohl ich mit 5 Watt über eine externe Magnetfußantenne (Nagoya UT-106UV) vom Autodach aus sende, werden nur 30-40% meiner Meldungen aufgenommen. Und das reicht nicht, um die Strecke annähernd korrekt abzubilden. Vor allem, wenn eine Richtungsänderung nur alle 1-2 Minuten passiert, hinterlasse ich nur alle 5 Minuten einen Punkt auf der Map bei dieser schlechten Erfolgsquote der Übertragung.

Ich habe daher SmartBeaconing deaktiviert und sende im Moment stur alle 30 Sekunden. Damit bekomme ich ausreichend Übertragungen zusammen, um die Route gut abzubilden. Gleichzeitig ist mir bewusst, dass dadurch das Netz stärker belastet wird. Da ich aber nicht viel mit dem Auto unterwegs bin, denke ich, dass es zumutbar ist

APRS Strecke mit Argent OpenTracker USB ohne SmartBeaconing
APRS Strecke mit Argent OpenTracker USB ohne SmartBeaconin

 

SainSonic AP510

Vor einigen Monaten habe ich mir ein SainSonic AP510 um knapp € 100,- über eBay aus DL gekauft. Ich bin total begeistert! Vielleicht ausnahmsweise mal weniger, weil es etwas Bestimmtes so gut kann. Sondern diesmal weil es so viel kann.

Das Ding wird als „APRS Tracker VHF GPS Bluetooth Thermometer TF Card APRSdroid“ angepriesen. Man sieht schon: da steckt viel drinnen.

Ursprünglich dachte ich, ich kaufe einen APRS Tracker. Ich war froh, dass ein leistungsfähiger Akku (angeblich 3.300mAh LiPo) drinnen ist, der auch wirklich 2 Tage hält, und dass ich kein separates Funkgerät brauche (mit komplizierten und herstellerspezifischen Adapterkabeln), sondern ein Transceiver mit 1 Watt (manche behaupten 1,5 Watt) für VHF (2 Meter-Band) mit drinnen ist.

Auspacken & Inbetriebnahme

Ich möchte da ja nicht zu sehr auf andere Blogger verweisen. Aber lest mal, was die alles erlebt haben! Ich kann das großteils auch bestätigen, aber die zentrale Aussage bleibt: auspacken und gleich mal ein Firmware Upgrade machen. Damit erspart ihr euch diese Erfahrungen und mit der Firmware aus Oktober 2014 funktioniert das Gerät bei mir sehr gut.

Meine Erfahrungen habe ich mit der Software vom 8.10.2014 (20141008) gemacht. Generell kann ich den Thread des Herstellers empfehlen. Die Seite ist zwar 95% chinesisch, aber die Downloads sind zu erkennen und selbsterklärend: http://www.y027.com/dvbbs8/dispbbs.asp?boardid=5&Id=829

Falls das Update-Programm nach dem Start alles chinesisch darstellt, habe ich einen einfachen Trick gefunden: im Verzeichnis des Programms gibt es eine Datei „avrubd.ini“. Öffnet diese mit einem Texteditor und sucht im obersten Block „[last]“ nach „language“ und ändert diese auf „English“:

language=English

Ein paar Dateien werden für den Start der Programme benötigt, zB. mscomm32.ocx oder msstdfmt.dll. Diese Dateien findet ihr im Internet oder auf der Seite eines anderen Bloggers.

In der Version von Oktober 2014 hat sich das Konfigurationsprogramm einwandfrei bedienen lassen.

20150612 - Konfig StefanDie Einstellungen sind weitgehend selbsterklärend. Folgende Punkte möchte ich kurz beschreiben:

  • MIC-E aktiviert die Komrimierung der APRS-Daten. Ich habe damit in OE, S5, HA und 9A keine Probleme gehabt. Die Übertragungsdauer wird durch diese Funktion reduziert.
  • Smart beaconing: das ist ein lobenswertes Feature, mit dem nicht ununterbrochen periodisch Nachrichten gesendet werden, sondern Meldungen erst dann geschickt werden, wenn sich meine Fahrtrichtung ändert.
  • Busy-control: damit hört der AP510 kurz in den Kanal, ob dieser frei ist, bevor die eigene APRS-Aussendung beginnt.

Erfahrungen

AP510 im Rucksack in der Straßenbahn (Antenne ist hier testweise eine Nagoya NA-771)
AP510 im Rucksack in der Straßenbahn (Antenne ist hier testweise eine Nagoya NA-771)

In den nächsten Tagen habe ich das Gerät überall mitgenommen. Zum Testen natürlich.

SainSonic AP510 im Zug mit Antenne Diamond RH951S
SainSonic AP510 im Zug mit Antenne Diamond RH951S

Meine Positionsmeldungen wurden großteils gut übertragen, ich habe allerdings in Gebäuden (auch direkt hinter (vmtl. bedampften) Fenstern) oft keinen GPS Fix bekommen.

 

 

 

erste Versuche mit dem GPS Repeater

Aufgrund der speziell gedämmten Scheiben im Auto funktionieren meine GPS-Anwendungen wie Navi oder APRS schon bei leichter Bewölkung nicht zuverlässig. Ich habe schon länger überlegt, mich mit einem GPS Verstärker zu beschäftigen.

Auf Ebay habe ich dann eine External Antenna Signal Repeater Amplifier GPS satellite Antenna for navigation um knapp € 25,- gefunden.

20150821_181113

Das Gerät besteht aus mehreren Teilen:

  • 20150821_181015einer externen Empfangs-Antenne, übrigens lt. Aufdruck für Glonass und GPS im Frequenzbereich 1575-1602 MHz geeignet,
  • einem USB-Stecker für die Stromversorgung,
  • einer Sendeantenne für GPS ist lt. Aufdruck für 1575.42 MHz ausgelegt
  • und einer SMA-„Kupplung“, damit das Kabel zB. zum Verlegen getrennt werden kann.

wpid-screenshot_2015-08-21-14-11-46.pngIch habe also bei mir zu Hause im Arbeitszimmer, in dem der GPS-Empfang bei geschlossenem Fenster auch fast unmöglich ist, einen ersten Test unternommen. Die Empfangsantenne habe ich auf den Fenstersims gelegt, das Fenster gekippt, um das durchgeführte Kabel nicht unnötig zu quetschen und den Sender am Tisch platziert. Bevor ich die USB-Verbindung hergestellt habe, habe ich mit der Android App „GPS Status & Toolbox“ getestet und keinen Fix zu einem Satellit erreicht.

wpid-screenshot_2015-08-21-14-16-13.pngNachdem ich den USB-Stecker angesteckt habe, hat man binnen Sekunden eine sanfte Verbesserung in der Empfangsleiste der Satelliten in der App gesehen. Aber die meisten waren immer noch zu schwach. Ich musste mit dem Gerät näher an die Sendeantenne kommen, ab ca. 20 cm wurden dann zahlreiche Satelliten grün angezeigt und es war binnen weniger Sekunden die Position bekannt und ein Fix auf 6/23 Satelliten. Das ist immer noch nicht viel, aber man muss vielleicht wissen, dass mein Fenster nur begrenzt Aussicht hat und der Ausschnitt am Himmel, in dem Satelliten gesehen werden, ist recht klein.

20150821_180959

20150821_181006Der Repeater scheint also wunderbar zu funktionieren, allerdings muss man sehr nahe zum Sender kommen. Für meine Anwendung ist das kein Problem, bei mehr als 50cm Abstand, zeigt der Sender keine Wirkung mehr.

Hier ein Foto mit technischen Daten zum Gerät:

gpsrep-specs

Update Februar 2021: mich hat Thomas OE1TRI angeschrieben – er hat ein anderes (vmtl. neueres?) Gerät probiert, mit dem er sehr zufrieden ist. Die Position ist sehr exakt und im Innenbereich hat er auch bei einer Distanz von 15m zum Sender keine Probleme. Das ist doch erheblich besser als meine Erfahrungen mit dem hier beschriebenen Gerät. Daher möchte ich euch den Link zum von ihm getesteten Gerät nicht vorenthalten: https://www.ebay.at/itm/GPS-Signal-Repeater-Amplifier-Transfer-25M-Antennen-Kit-fur-den-Innenbereich-L1/254094640578?hash=item3b293885c2:g:3v4AAOSwH-RcSps5 (GPS Signal Repeater Amplifier Transfer 25M Antennen-Kit für den Innenbereich L1)

Maritime mobile

Bojenfeld in einer Bucht auf Dugi Otok in Kroatien. Unser Boot ist das dritte von links oder rechts

Im Zuge eines Segeltörns in Kroatien (Reiseberichte gibt es unter anderem hier und hier) haben wir am 16. Juni 2015 bei einem Bojenfeld in einer Bucht auf der Insel Dugi Otok im Naturpark Telašćica das Kurzwellen-Equipment ausgepackt und in Betrieb genommen.

Co-Skipper Florian (links im Bild) hat sich aufgrund des starken Winds einen Poncho ausgebort und zieht ebenso stilsicher wie todesmutig mit OM Bernd OE1IHB den Langdraht auf den Mast.

Als Antenne hat ein etwa 22 Meter langer Funkdraht gedient, den ich beim Amateurfunkflohmarkt in Altlengbach im Vorjahr von einem mit Carmouflage bekleideten Ungarn erworben habe. Auf der Haspel waren etwa 40m Draht, wir haben ihn also bereits gekürzt. Die Langdrahtantenne haben wir endgespeist über einen MTFT Magnetic Balun (eigentlich: Unun) mit dem automatischen Antennentuner MFJ 993B verbunden. Das andere Ende haben wir auf dem 17m hohen Mast raufgezogen und somit den Draht eher vertikal montiert.

Als Transceiver hat sich wieder mein Yaesu FT857 für die portable Nutzung bewährt.

IMG_4058
Stromverteiler und Multimeter („sicher ist sicher“)

Zur Stromversorgung hat unser Skipper OM Florian OE3FDS die 12V Bordspannung von einer der beiden 110Ah-Bordbatterien genutzt und mit KFZ-Starterkabel mit meiner 12V-Vielfachverteilerleiste (bis 20A Belastbarkeit) verbunden. Von dort aus konnten wir die aktiven Geräte praktisch über Bananenstecker bzw. Kabelschuhe anschließen.

Damit die Konstruktion nicht verrutscht und die Sachen durcheinander fliegen, wird alles noch großzügig mit Duct Tape befestigt. Das schaut zwar nicht gut aus, hält aber super.

Konkret haben wir also folgendes Setup verwendet:

  • Antenne: Langdraht, ca. 22m endgespeist
  • Balun/Unun: MTFT Magnetic Balun 1:9
  • Tuner: MFJ 993B
  • Transceiver: Yaesu FT857
  • Stromversorgung: direkt von 12V Bordbatterie per KFZ-Starterkabel und 12V-Vielfachverteilleiste
  • genutzte HF-Leistung: max. 35W, normalerweise ca. 20-25W
  • unser Locator: JN73nv98

Skipper Florian OE3FDS (9A/OE3FDS/mm) macht es sich im Hintergrund gemütlich und lauscht...
Skipper Florian OE3FDS (9A/OE3FDS/mm) macht es sich im Hintergrund gemütlich und lauscht…

Und schon kann’s losgehen: wir hören auf 40m die ersten Stationen. Ich probiere auch andere Bänder und stelle fest, dass um ca. 16:30 Lokalzeit am besten die Stationen auf 15m und 20m zu hören sind. Also beantworte ich die ersten CQ-Rufe mit meinem „Maritime Mobile-Call“ 9A/OE1SCS/mm und komme auch sofort durch. Wir arbeiten ein paar Stationen aus Griechenland, Italien, der Ukraine und zu meiner Freude erreichen wir als Premiere für mich Kuwait, das sind immerhin fast 3.300km Luftlinie!

IMG_4097
9A/OE1SCS/mm

Ich finde es immer wieder interessant, welche Abweichungen manche OMs und YLs zum vorgeschriebenen Funkalphabet finden. Ich bin es ja schon gewohnt, dass man beispielsweise bei Rufzeichen mit „RG“ oft „Radio Germany“ statt „Romeo Golf“ hört. Falls mein Gesprächspartner beim QSO meinen Call nicht versteht und bis zur Heiserkeit „QRZ? Oscar Echo One Questionmark? Questionmark?“ ruft, antworte ich auch oft als „Oscar Echo One Sugar Chicago Sugar„, da mein „Sierra Charlie Sierra“ offenbar mehrfach nicht zu verstehen war. Aber meinen Maritime Mobile-Call 9A/OE1SCS/mm hat ein italienischer OM mit „Mickey Mouse“ (als /mm) bestätigt. Das finde ich mal wieder kreativ. Und ich muss sagen, es ist nicht so unpassend, schließlich versteht es wirklich jeder sofort.

IMG_4057Aber wir sind ja verabredet: um 17:30 Lokalzeit sollten wir auf 7.125kHz +/- unseren Freund OM Simon OE3FSS hören. Ich bin noch mit dem Abschluss eines QSOs nach SV (Griechenland) beschäftigt und drehe um 15:33 UTC auf 7.125 kHz LSB. Und da hört man auch schon Simon rufen! Und das ziemlich gut sogar, nur ein bißerl Rauschen und Knacken im Hintergrund. Gut, das Rauschen war hier im Naturpark vorher sehr gering, es schwankt zwischen S2 und S4. Wir beantworten den Ruf natürlich unmittelbar, geben 58 und bekommen 56. Simon funkt von Prottes bei Gänserndorf aus, gute 500km entfernt, mit einem Dipol (80m lang), seinem Elecraft KX3 und einer HF-Endstufe, über die er für diesen QSO ca. 150 Watt Ausgangsleistung erzielt. In Prottes herrscht zur Zeit ein Gewitter, wir vermuten, dass das Rauschen daher stammt.

OM Bernd OE1IHB, meinereiner Stefan OE1SCS, Skipper OM Florian OE3FDS
OM Bernd OE1IHB, meinereiner Stefan OE1SCS, Skipper OM Florian OE3FDS

Ein paar Minuten später übernimmt OM Florian als 9A/OE3FDS/mm und tauscht mit Simon die wesentlichsten aber weiterhin vorschriftsmäßig belanglosen Daten über die Funkverbindung aus, um dann an OM Bernd 9A/OE1IHB/mm zu übergeben.

Die Anzahl der Stationen auf 40m nimmt um diese Zeit (mittlerweile wird es 16:00 UTC) stark zu, es war ja auch zu erwarten, dass das Band um diese Zeit „aufmacht“. Die Störungen nehmen daher zu und Simon und wir werden von benachbarten Stationen immer mehr verdrängt. Bald sind nur mehr Stationen aus den üblichen Ländern mit den vielen Kilowatt-Stationen zu hören.

Auch die Situation in den anderen Bändern hat sich eher verschlechtert, 20m und 15m verschwinden immer mehr im Rauschen.

Auf 14.313 kHz erreichen wir DJ3CD, der vor allem auf Maritime Mobile-Stationen achtet, und uns die Wetterinformationen für die nächsten 24h übermittelt. Dass wir nicht alleine sind, haben wir erkannt, als uns DH6HW mit einem kurzen Zwischenruf die Windstärken in Beaufort ergänzt hat.

Nach diesen QSOs (und den Anstrengungen vom Segeln) sind wir schon etwas erschöpft und bevor wir QRT senden, rufe ich noch ein paar Mal: „See kuw See kuw See kuw de Nine Alpha Slash Oscar Echo One Sierra Charlie Sierra Maritime Mobile“ (CQ CQ CQ de 9A/OE1SCS/mm).

Hier noch ein paar Eindrücke:

IMG_4041

IMG_4030
https://de.wikipedia.org/wiki/Drei_Affen

Erfahrungsbericht Ubiquiti Unifi

Unsere Wohnung ist ja gar nicht so groß. Aber da wir zwei Wohnungen verbunden haben, ist der Wohnbereich so großzügig verteilt, dass ein Access Point nicht zuverlässig alle Zimmer versorgen kann.

Ich habe also am Anfang einen zweiten Access Point aufgestellt und gehofft, dass ich es in der ganzen Wohnung ins Internet schaffe. Das hat auch soweit funktioniert. Leider fangen die Probleme an, wenn man sich in der Wohnung bewegt und den Bereich des derzeit aktiven APs verlässt. WLAN hat nämlich die Eigenschaft, dass es so lange eine Verbindung zum bestehenden AP hält, bis diese wirklich unbrauchbar wird. Erst dann ermitteln die Endgeräte den stärksten AP neu und verbinden sich dorthin. Auch bei gleicher SSID hat der Übergang nicht besser funktioniert.

Damit klappt zwar üblicherweise das Surfen im Internet, aber ein VoIP-Call bricht beim Herumwandern in der Wohnung ab.

Controller

Aus dem Firmenumfeld kenne ich WLAN-Lösungen, die zentrale Server (= Controller) einsetzen, um alle Access Points inkl. der verbundenen Clients zu verwalten und die Verbindung von Netzwerkseite her optimieren, wenn ein Client einen besseren Access Point nutzen sollte.


Update Dezember 2016: mittlerweile gibt es modernere Access Points, als ich in diesem Beitrag beschreibe. Ich habe dazu einen anderen Blogbeitrag verfasst und würde empfehlen, eher ein Produkt der moderneren UAP AC-Serie zu wählen, falls dieser Artikel zu einer Kaufentscheidung herangezogen wird.


Nachtrag Jänner 2017: mittlerweile sind auch 802.11ac-fähgie Geräte im leistbaren Segment für Außeninstallationen erschienen, die ich in einem separaten Artikel vorstelle. Diese Geräte eigenen sich auch gut für den Innenbereich.


Bei der Suche nach einer Lösung für meine Wohnung bin ich auf die Unifi-Produktreihe von Ubiquiti gestoßen. Ubiquiti ist mir als günstiger aber zuverlässiger Hersteller bereits aus meinen HAMnet– und Funkfeuer-Erlebnissen bekannt und meine bewährten Händler haben die Geräte zu guten Konditionen lieferbar.

Im Folgenden beschreibe ich das endgültige Setup, das sich eigentlich erst Schritt für Schritt (Gerät für Gerät) entwickelt hat.

Zero Handoff & Unifi Controller

Bei Unifi hat mich besonders die Zero-Handoff Funktion interessiert. Damit verspricht Unifi die oben beschriebene Funktionalität, die ich von Controllern kenne, auch ohne zentralen Controller! Klingt nach Zauberei, ist aber dadurch zu erklären, dass die Access Points permanent miteinander in Kontakt stehen und so jeweils eine aktuelle Sicht auf die gesamte WLAN-Umgebung und die verbundenen Geräte haben. Ein zentraler Controller ist somit nicht notwendig. Natürlich ist die Voraussetzung, dass die Access Points im selben Netzwerksegment platziert werden.

Das heißt: zum Einrichten der Lösung, muss man die Software vom zentralen Controller schon einmalig installieren (zB. am Laptop). Die SW ist für Linux (zB. auch als .deb-Paket), Windows und Apple-Produkte frei zum Download verfügbar: https://www.ubnt.com/download/.

Für den Betrieb der Lösung ist der Controller nicht erforderlich, außer man möchte etwas Ändern/Umkonfigurieren oder Statistiken sammeln (zum dauerhaften Sammeln muss der Controller auch permanent laufen).

Ich habe den Controller auf einer dedizierten Virtuellen Maschine auf meinem VMWare ESXi unter Ubuntu Linux LTS dauerhaft in Betrieb. Beim Einbinden der Paketquellen in Ubuntu gibt es drei Möglichkeiten:

  • stable: am weitesten verbreitet, nur stabile und bewährte Software- & Firmwarestände. Sicher die richtige Wahl für den produktiven Einsatz.
  • rapid: Software, die sich bereits länger als Beta bewährt hat, sich aber noch nicht für „stable“ eignet. Hier hat man einen guten Kompromiss zwischen neuen Funktionen und stabiler Software.
  • beta: Testversionen

Ich habe mich für „apt-get install unifi-rapid“-Variante entschieden und damit gute Erfahrungen gemacht.

Access Points

UAP LR an der Decke montiert
UAP LR an der Decke montiert

Nachdem ich eine preiswerte Lösung für die Wohnung gesucht habe, habe ich mich für die UAPs entschieden, die nur im 2,4 GHz-Bereich arbeiten. Das ist aus Performancesicht natürlich nicht ideal, weil der ganze 5 GHz-Bereich nicht abgedeckt ist, aber für uns vollkommen ausreichend, auch weil die nächstgrößere Variante mindestens das dreifache gekostet hätte.

Ich habe also folgende Geräte gekauft:

UAP einfach oben auf's Kastl gelegt
UAP einfach oben auf’s Kastl gelegt

Der UAP Access Point hat etwas mehr als € 50,- gekostet. Der LR schon 30% mehr. Das war übrigens keine gute Investition: gemäß regulatorischer Auflagen darf das WLAN-Equipment maximal 100 Milliwatt (mW) EIRP aussenden, das sind bekanntlich 20 dbm. Der UAP schafft max. 20 dbm und der UAP LR schafft 28 dbm. Das dürfte auch der wesentliche Unterschied für die „Long Range“-Angabe sein. Wenn man nun dem Controller mitteilt, dass sich diese Installation in Österreich befindet, lassen sich alle Geräte mit maximal 20 dbm konfigurieren. Das LR-Feature fällt somit flach. Daher: lieber einen UAP mehr kaufen als UAP LRs, bei denen man die Leistung sowieso nicht nutzen sollte.

Ubiquiti PicoStation zur Versorgung des Gartens
Ubiquiti PicoStation zur Versorgung des Gartens

Die PicoStation habe ich im Fenstersims außen montiert und funktioniert im ganzen Garten wunderbar. Leider haben meine Fenster eine Dämpfung von 15-20 db, wodurch das Gerät nur schlecht in der Wohnung erreichbar ist. Aber für indoor habe ich ja die UAPs.

Die Access Points kann man übrigens gar nicht direkt konfigurieren. Sobald man den Controller installiert hat, loggt man im Portal das erste Mal ein und findet im Menüpunkt „Access Points“ die Geräte, die der Controller über Broadcast/Multicast im lokalen Netzwerksegment gefunden hat. Diese kann man nun „adoptieren“, wie es bei Ubiquiti heißt.  Bei Bedarf werden die Access Points im Hintergrund automatisch auf die aktuelle Firmware aktualisiert. Die Firmware kommt übrigens mit der Controller-Software mit. Wenn man ein Update installiert, wird bei Bedarf auch automatisch angeboten, die Access Points zu aktualisieren.

Die PicoStation ist hier eine Ausnahme, weil sie eigentlich kein Unifi-Produkt ist, sondern aus der Ubiquiti-AirMax-Reihe stammt. Mit einem einfachen Update wird aus dem Gerät allerdings ein Unifi-Device, das dann vom Controller erkannt, eingebunden und künftig mit Updates versorgt wird.

Konfiguration

Im nächsten Schritt konfiguriert man ein Profil mit den gewünschten WLAN-Netzen (SSIDs) und weist das Profil dann einem oder mehreren Access Points zu. Bis zu 4 SSIDs kann ein Access Point bedienen.

Map in Unifi Controller mit den Access Points
Map in Unifi Controller mit den Access Points

Ich verwende zu Hause drei Netze, die über VLANs getrennt sind. Alle Access Points hängen an einem TPLink TL-SG3424. Mein internes Netz wird nativ an die Access Points übergeben. Das würde ich auch so empfehlen, damit das automatische Erkennen über den Controller funktioniert. Meine zwei anderen Netze werden als VLAN getaggt übergeben. Die Konfiguration ist somit:

  1. VLAN native mit meiner internen SSID und WPA2 zur Kommunikation mit meinem LAN und dem Internet,
  2. VLAN 44 als SSID „hamnet“ mit WPA2, per VLAN vom Internet getrennt, und
  3. VLAN 2 als SSID „guest“ als Gästenetz für direkten Internetzugang.

Ein Gästenetz zu haben ist mir sehr angenehm, weil in meinem internen Netzwerk mittlerweile so viele Dienste über DLNA (zum Sharen von Urlaubsfotos zu den Fernsehern, etc.) laufen und ich nicht will, dass jeder Besucher unkontrolliert in unseren Urlaubserinnerungen blättern kann. Über das Gästenetz wird einfach nur ein guter Internetzugang zur Verfügung gestellt. Außerdem verwende ich es als Testnetz, zB. wenn’s darum geht IPv6 im LAN zu aktivieren. Solche Funktionen bekommt als erstes das Gästenetz…

Für HAMnet ist es auch fein, eine eigene SSID zu nutzen. Ich bin da schon auf einige Probleme draufgekommen, die andere vielleicht nicht bemerken: die meisten Benutzer verbinden das HAMnet mit ihrem internen Router. Dadurch kann man sowohl ins HAMnet als auch ins Internet, ohne neu verbinden zu müssen. Dadurch funktioniert aber auch zB. die DNS-Auflösung über’s Internet, während man im HAMnet ist. In diesem Zusammenhang ist mir schon öfters aufgefallen, dass einzelne Seiten im HAMnet nicht ordentlich funktionieren oder Darstellungsprobleme haben, weil sie Teile des Contents aus dem Internet laden. Wenn man sich also nur im HAMnet, ohne Internetzugang bewegt, ist man meiner Ansicht nach erst wirklich sauber im HAMnet unterwegs.

Liste der aktuell verbundenen Benutzer im Unifi Controller
Liste der aktuell verbundenen Benutzer im Unifi Controller

Ich habe also das Profil mit den drei SSIDs, die jeweils auf VLANs abgebildet werden, per Software mit den Access Points verknüpft und 2 Minuten später waren die SSIDs verfügbar und die ersten Geräte haben sich verbunden! Voila! Fertig!

Kurz zwei Nachteile zu Zero-Handoff

Die Lösung funktioniert wunderbar und ich bin sehr glücklich, viele Vorteile einer controllerbasierten Lösung, vor allem Zero-Handoff, um wenig Geld auch zu Hause nutzen zu können. Zwei Nachteile möchte ich anmerken. Das sind keine groben Probleme, aber ich möchte es erwähnen:

  1. bei jeder Konfigurationsänderung ist immer der gesamte WLAN-Verbund (alle Access Points mit allen SSIDs) für 2-3 Minuten offline und die Endgeräte werden getrennt. Das ist notwendig, da ja ohne Controller alle Access Points ihre Konfigurationen und Stati gegenseitig austauschen müssen, bevor sie einen Zero-Handoff-Dienst anbieten können.
  2. nachdem das Zero-Handoff-Feature auf der Netzwerkseite passiert und das Endgerät gar nicht mitbekommt, dass es von einem Access Point zu einem anderen roamt, müssen alle APs den gleichen WLAN-Kanal nutzen. Damit ist natürlich ein Aufteilen auf mehrere Kanäle, wie es üblicherweise gemacht wird, nicht möglich. Das kann sich negativ auf den Datendurchsatz bzw. die Airtime auf diesem Kanal auswirken.